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VAN FRAASSEN’S CONSTRUCTIVE EMPIRICISM, SYMMETRY
REQUIREMENTS AND SCIENTIFIC REALISM

MICHEL GHINS

Abstract. Within the framework of a semantic view of science, such
as the constructive empiricism advocated by van Fraassen, it is shown
that the empiricist position naturally leads to symmetry principles in
the construction of models in physics. As a consequence of those
symmetry constraints, it is argued that a selective form of realism
for theoretical objects is more plausible than antirealism. Several
examples drawn from spacetime physics, static and mechanics are
discussed, particularly the transition from Cartesian to Newtonian
mechanics.

The semantic or model-theoretic approach of theories has long become the
dominant view in philosophy of science. It opposes the logical positivist
or syntactic conception of scientific theories. For the latter, a theory is es-
sentially a set of theoretical postulates or axioms whose theoretical, non-
observational, terms are interpreted by means of analytic correspondence
rules which connect each theoretical term to a set of observational terms,
i.e. terms which directly refer to observable entities, properties or processes.
The objections to this neo-positivist view have been abundantly put forward
in the literature (see for example Suppe (1989), van Fraassen (1980)) and it
would be pointless to rehearse them. After a brief reminder of the central fea-
tures of the model-theoretic approach, I will give some precisions on the no-
tion of model which will be used, mainly inspired from van Fraassen’s con-
structive empiricism which, in accordance with actual practice in physics,
gives a prominent role to symmetries in model construction. I will then
show that this particular brand of the model-theoretic construal of science
naturally leads to restrictions, in terms of symmetry requirements, on the
construction of models. As a consequence of these constraints, it is argued
that scientific realism is more plausible than antirealism, in particular in the
domain of classical spacetime physics.

I wish to thank Harvey Brown, Silvio Chibeni, Dennis Dieks, Steven French, Jan Govaerts,
Décio Krause, Bas van Fraassen for their useful comments on a first draft of this paper.
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1. The notion of model

The fundamental sense, that played a role of paramount importance in the
hands of the heirs of the logical positivists (Putnam and Quine, among oth-
ers) is the well-known logical sense: a model is what satisfies or makes true
a set of propositions. This sense, although obviously still accepted and used
by the proponents of the semantic view, slid to the background among those
who advocate a model-theoretic approach of science because it is closely
linked with the neo-positivist conception which, among other drawbacks,
laid too much emphasis on language and axiomatization. According to the
defenders of the model-theoretic approach, a theory is not primarily a set of
propositions or laws, but only derivatively, to the extent that such proposi-
tions describe the structure of a model, or, rather, a class of models: models
are prior. Models moved to the forefront, they “occupy center stage” as van
Fraassen puts it. A model then should not be introduced by starting from a
set of axioms but should be presented “directly”, independently of the laws
and axioms which they may make true and which could even be unknown.
Thus, the model-theoretic or semantic conception of theories is not only ad-
verse to the positivistic credo that issues in the philosophy of science are in
fact issues in the philosophy of the language of science but also to the con-
tention that philosophy of science is first of all concerned with the logical,
syntactic and even semantic, properties of axiomatized theories.

Of course, a model can only be conveyed in a language (this is, as van
Fraassen remarks, a “trivial point”). What is a model then? Let me quote
here a quite revealing footnote from van Fraassen’s Laws and Symmetry:

“In my terminology here the models are mathematical struc-
tures called models of a given theory only by virtue of be-
longing to the class defined to be the models of that theory”.
(1989, p. 366)

2. The relation of models to phenomena

A physical theory cannot be only a set of purely mathematical structures
but must entertain an —at least possible— relationship to phenomena. This
relationship is characterized by van Fraassen as “embedding”: observable
phenomena are embedded —or embeddable— in models. Phenomena which
are isomorphic to parts or portions of the models are said to be embedded in
them. In other words, phenomena are shown, by abstracting some of their
aspects or contents, to possess a structure which is identical to the structure
of some parts of the models. The parts of a model M which are isomor-
phic to possible phenomena are called “empirical substructures” £. These
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substructures, being subsets of mathematical models, must obviously also
be mathematical. Given that isomorphism means complete identity of struc-
ture, it follows that, for an empirically adequate theory, observable phenom-
ena have the same mathematical structure as the empirical substructure: only
their contents or “matter” may be different.

“Empirical adequacy is truth with respect to the observable phenomena”
(van Fraassen 1989, 192-193). Truth here means isomorphism of an em-
pirical substructure with the actual, real, structure of phenomena (which are
not sense data). van Fraassen supplements his model-theoretic view with a
correspondentist, and even representational, conception of truth. Models are
not only copies of possible worlds, but possible worlds themselves in the
sense that they possess and exhibit a formal structure which can in principle
be shared, if the model is correct, by the real world. Empirical substructures
of theories which save the phenomena correspond (and here correspondence
means complete identity of mathematical structure) to real, observable struc-
tures of the phenomena.

“(...) the empirical structures in the world are the parts which
are at once actual and observable” (1989, p. 228)

It follows that phenomena embedded in empirical substructures (this is
a limiting case of embedding when a model narrows down to an empirical
substructure) have mathematical structures (also called by van Fraassen ap-
pearances (1980, p. 64)). The operation of embedding reveals or exhibits the
real structures in phenomena. This view bears a striking resemblance with
some of Wittgenstein’s ideas in the Tractatus, where a true proposition has in
common a logical form with the reality it depicts (a proposition functions as
a “scale model”). It seems a direct consequence of van Fraassen’s construc-
tive empiricism that an empirical substructure has a mathematical form in
common with the phenomena it represents. This appears particularly clearly
from one of van Fraassen’s main examples, the seven-point geometry, which
occurs both in The Scientific Image (p. 42) and Laws and Symmetry (p. 219).
In this well-known example, a specific structure of lines and points made
of, say, ropes and nails (the “matter” of the phenomena), is embedded in
Euclidean space.

Thus, in physics at least, a theory is a set of mathematical structures which
contain empirical substructures and which exhibit symmetry and invariance
properties.

There is quite a large array of mathematical structures as candidates for
scientific theories. The main difficulty in physics, as in other mathematized
sciences, lies in constructing models that have some chance of being empir-
ically adequate, that is, which have a possible connection with phenomena.
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The mere consideration of mathematical models themselves does not permit
to draw a demarcation between the substructures which are empirical and
the ones which are non-empirical or meta-empirical. Such a distinction is
not intrinsic to mathematical models and must then come from elsewhere,
namely from experience.

Having approvingly referred to the works of Przelewski, Wojcicki, Dalla
Chiara, Toraldo di Francia, Patrick Suppes, Frederick Suppe, Sneed and oth-
ers, van Fraassen goes on to say:

“Certain parts of the models were to be identified [underlin-
ing is ours] as empirical substructures, and these were the
candidates for the representation [underlining is ours] of the
observable phenomena which science can confront within our
experience”. (1989, p. 227)

To qualify as such an empirical sub-structure £ must be included in at least
one model M:

ECM

According to constructive empiricism, the aim of science is to save, or
rather to embed, the observable phenomena, that is to build up models which
contain substructures isomorphic to all possible phenomena within the realm
of the theory.

van Fraassen pursues:

“At this point it seemed that the relationship thus explicated
[embedding] corresponds exactly to the one Reichenbach at-
tempted to identify through this concept of coordinative defi-
nitions, once we abstract from the linguistic element. Thus in
a space-time the geodesics are the candidates for the paths of
light rays and particles in free fall. More generally, the identi-
fied spatio-temporal relations provide candidates for the rela-
tional structures constituted by actual genidentity and signal
connections” (1989, pp. 227-228).

Thus, if science aims at constructing mathematical models that save the
phenomena and if empirical adequacy is ascertained on the basis of observa-
tion, we must be able:

1. To identify in the models the parts which count as empirical substruc-
tures or possible representations of phenomena.

2. To empirically ascertain the isomorphism, that is actual identity of
mathematical structure, of the structure of phenomena with the empirical
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substructures.

The two questions are tightly related. An empiricist can only provide a
solution to the first problem on the basis of a solution to the second. For
example, geodesics (the metrically extremal paths) are empirical substruc-
tures because they possibly represent the paths of light rays. This possibility
is guaranteed by the ascertainability, in appropriate circumstances, that ob-
served light rays actually follow (or don’t) geodesics. If they do, it shows
that the paths of light rays are isomorphic to geodesics of space-time. This
cannot be achieved, within the model-theoretic approach, by fiat or only by a
definition a /a Reichenbach, but by observations. We must be able to “see”,
given the meanings of the words “light ray” and “geodesic” (according to a
specified metric) that the path of a light ray is a geodesic. For someone who
is willing to defend the model-theoretic view of science like van Fraassen,
phenomena, to the extent that they are embedded in models, must actually
possess a mathematical structure. This seems to be clear if we follow van
Fraassen when he compares embedding with the relationship that Reichen-
bach sought to identify by means of his coordinative definitions “once we
abstract from the linguistic element”.

What are the “actual” and “observable” structures in this case? Even
though a mathematical structure is not perhaps per se observable, we must
be brought to see or observe that some phenomena have a mathematical
structure. If so, as a consequence of the correspondence view of truth, those
mathematical structures are real. If it is true that light rays follow geodesics,
it is also true that light rays possess the mathematical structure typical of
geodesics. Since the structure of a geodesic is defined by means of metrical
relations we cannot escape from the conclusion that light rays manifest a real
metrical structure.

3. Objections

Let’s pursue geometrical examples a little further. Phenomena in this case
are given by the well-known empirical behaviour of rods and clocks deter-
mined on the basis of spacetime coincidences of (quasi-)punctual events.
Once the meanings of geometrical terms (like congruence, or equality of
lengths and angles) have been specified, experience teaches us that those
phenomena are embeddable (locally) in a manifold endowed with a metric.
In the case of Minkowski spacetime, the model is an infinite manifold of
points endowed with a four-dimensional metric of negative signature and on
which the Lorentz-Poincaré symmetry group acts. What are the empirical
substructures? They simply are the intervals and angles which can be mea-
sured by rods and clocks (or equivalent measuring devices). Of course not
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all possibilities are actualized; not all intervals and angles, etc. are marked
by actually observed bodies or processes. But at the level of empirical sub-
structures, there is no reason not to accept the existence of the metric since
it is exactly what is shared by empirical substructures and phenomena.

At least two objections may be raised here. The first would be to retort,
in a Reichenbachian guise, that the geometry, i.e. the metric, is relative to
a previous coordinative definition of congruence and that we are confronted
with a (paradigmatic and abundantly discussed) case of underdetermination
of theories by phenomena. Here, however, we would have to deal with dif-
ferent empirical substructures, each corresponding to a different definition
of congruence (Reichenbach 1957) and not the embedding of the same em-
pirical substructure in different models. Surely, the truth (or falsehood) of a
statement depends on both the meanings of words and the observable phe-
nomena. If the empirical meaning of the word “congruence” is changed, the
structure of the description of phenomena will also have to be modified to
preserve truth. This merely shows that phenomena do not impose a unique
way of describing and embedding them. Granting this doesn’t commit one
to antirealism. Moreover, this kind of discussion is certainly too language-
oriented for the model-theoretical approach.

Second, and more seriously I think, it can be argued that we don’t ob-
serve the metric but only the behaviour of metrical devices or even only the
(quasi-)coincidence of spacetime events. Such a radical empiricist position,
which is not van Fraassen’s, implies an extremely narrow construal of what
experience or observation is. The main rejoinder to such a radical empiri-
cism is to resort to our daily conviviality with phenomena and the common
practice of scientists. To admit that we can observe —or at least empirically
ascertain— the congruence of intervals does not amount to the desertion of
the empiricist camp but the adoption of a more tolerant posture toward what
can count as experience or observation. Now, congruence is mathematically
expressed in the model by means of the metric tensor. If phenomena possess
the same mathematical structure as parts of the models, phenomena show, or
can be made to be showing after an appropriate training, that their structure
is Minkowskian and therefore that the metric field exists. To oppose this
would be tantamount to embracing antirealism at the level of phenomena.

What about the unobserved parts of spacetime? Admittedly, what precedes
doesn’t commit us to the existence of spacetime points, nor to the continu-
ity of the manifold, but only to the existence of a metric at the spacetime
locations where actual phenomena occur. The use of a continuum can be
considered as an expedient device to perform the embedding. On the basis
of the previous considerations, we must remain agnostic with respect to the
existence of a continuous or discontinuous spacetime point-manifold. But
should we remain agnostic with respect to the existence of a metric in unin-
vestigated spacetime locations?
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Any arbitrary large —but of finite size— region, devoid of matter and
energy, of spacetime can in principle be explored by rods and clocks, or
traversed by free particles and light rays. Empty regions of spacetime are
well-defined within the model (Minkowski spacetime) without any need for
reification of those regions or their metrical structure. But then what is the
difference between “occupied” and “non-occupied” regions of spacetime as
far as their structure is concerned? None, in my opinion. They all share
the same Minkowskian structure. The main point I want to make is that it
is impossible in the present case to distinguish the empirical substructures
from the non-empirical ones. Any finite portion of Minkowski spacetime
counts as an empirical substructure, i.e. is a candidate for the representation
of phenomena. The only —and unavoidable— underdetermination present
is the underdetermination of the observable relative to the observed. The
acceptance of a theory-model always involves a certain amount of extrap-
olation, even at the empirical level. A given rod, say, can in principle be
observed at any spacetime location and thereby render observable its local
structure. (In fact, we know that in our physical world Minkowski geometry
is approximately correct only in some regions and for phenomena which can
be accounted for without resorting to a non-vanishing curvature (see Ghins
and Budden (2001))). Recall that van Fraassen has no qualms in accepting
the existence of observable objects like dinosaurs. If so, there seems to be
no reason for him to deny the existence of Minkowskian structure, even in
empty regions, since they count as the observable form of empirical sub-
structures.

4. The role of symmetries

Given its close link with visual perception, geometry has always played a
privileged role in science, particularly in physics, since its origins. The
reach of geometry has considerably been enlarged by Félix Klein’s Erlanger
program (1872) according to which geometry is the study of symmetry or
invariance groups acting on space (which can be extended to spacetime).
Symmetry and invariance clearly are key concepts for model construction in
modern physics.

The first step toward embedding phenomena is abstraction (van Fraassen
1989, p. 234). The same phenomena can be embedded in several, differ-
ent ways, depending on which aspects of the phenomena are considered as
belonging to the contents and which features are taken to be formal or struc-
tural. Once the formal aspects have been abstracted, we have obtained an
empirical structure and we can proceed to the embedding of phenomena in
wider model-theoretic structures. If we only have set-theoretical inclusion in
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mind, an empirical structure £ can be included in a very large class of mod-
els M: just put in the model ingredients —additional objects, for example—
which may have nothing to do with the phenomena at stake. But such moves
are devoid of interest and van Fraassen does put constraints on the construc-
tion of models which rest on pragmatic considerations, among which the
predictive capacity of the theory is prominent. Symmetries play a decisive
role in characterizing the empirical content and the predictive power of a
theory.

“A reflection on the possible forms or structures definable
from joint experimental outcomes yields constraints on the
general form of the models of the theories ‘from below’; that
class of models can then be narrowed down by the imposi-
tion of postulated general laws, symmetry constraints, and
the like, ‘from above’.” (1989, p. 228).

As a constraint to model construction, I propose the following principle,
which I call the Principle of invariance of the empirical substructures (PIES):

PIES: The symmetry group of the embedding model must leave its empirical
substructures invariant.

This principle imposes an integration of the empirical substructures within
the models in a stronger sense than mere set-theoretical inclusion since it
requires a relation between the symmetries of the empirical substructures
and the symmetries of the model as a whole. More precisely, PIES implies
that the symmetry group E of the empirical substructures, which may be
called the empirical symmetry group, can be larger or equal, but not smaller
than the symmetry group S of the embedding models:

EDS

If we allowed the group S to be larger than £, then S would contain transfor-
mations which do not leave the form of the empirical substructures invariant.
In such a situation, for any empirical substructure £ there exists a transfor-
mation s € S such that:

sE#E

And s€ may fail to accommodate the phenomena. Suppose £ is embedded
in a particular model M. Then the transformed model sAMM may not be
empirically adequate since it may not contain £ as an empirical substructure.

To attempt to clarify the issue without becoming too technical, let’s take
a simple example, drawn again from geometry. Suppose the empirical sub-
structures are invariant under the group of rigid motions (translations and
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rotations) which is the symmetry group of Euclidean geometry. If we tol-
erate models the structure of which is invariant under the whole group of
linear transformations, some of these models won’t be able to accommodate
some observed Euclidean structures: the length of an interval, for instance, is
not generally conserved under similarities, i.e. transformations which map a
triangle into any triangle with the same angles. What would count as empir-
ically true for a model would no longer be so for another isomorphic model.
Thus, the symmetry group of the entire model can be smaller or equal but
not larger than its empirical subgroup.

Moreover, in accordance with the spirit of an empiricist approach, it is
natural to demand that the symmetry group of the model cannot be smaller
than the empirical subgroup. Consider classical mechanics. Newton argued
in favour of the existence of an absolute space which contains an invariant
centre (occupied by the centre of gravity of the solar system). The invariance
group of Newton’s mechanics is a smaller group than the invariance group
of Newtonian classical mechanics of point masses, since it includes only ro-
tations around a privileged point, the “centre” of the world, and not rotations
around any arbitrary point. It is well-known that no empirical way exists to
find the location of this putative centre, which is better kept out of the realm
of physics. (See for example Weyl 1963 p. 74, Friedman 1983 pp. 153-154).
In general, the downsizing of the invariance group of the model will lead
to the addition of invariant objects (properties and relations) and statements
since as the size of the group decreases the number of its invariants increases.
If we admit that it is a desirable feature of theory construction not to intro-
duce new objects the relation of which to experience may be problematic, it
is safer not to allow models the symmetries of which form a smaller group
than the symmetry group of its empirical substructures. This proposal is not
to be taken as an absolute constraint but rather as a guide to model construc-
tion, in conformity with an empiricist position. Together with PIES, this
requirement implies that the empirical symmetry group be identical to the
symmetry group of the entire model. I thus propose the following guiding
principle, which may be called the Principle of symmetry for model con-
struction (PS):

PS: The symmetry group of the model must be identical to its empirical sym-
metry group

As an illustration of this principle, which I take as a local constraint, let
us discuss a simple example drawn from statics. Suppose that we set up, in
a laboratory, the following device (see Figure 1) with pulleys, strings and
bodies and that we observe that the bodies don’t move relatively to each
other and that the pulls cancel each other out.
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Figure 1

It can readily be shown that these observable phenomena are embeddable
in a vector space where bodies exert pulls which can be isomorphically rep-
resented by vectors (see Figure 2).

Figure 2

True, we directly observe pulleys, strings, pulls, bodies, etc. and not vec-
tors. It is by abstraction that we isolate in the phenomena or the data a
mathematical structure. Here the data are modelled in terms of vectors and
vectorial sums. This data structure is isomorphic to an empirical substruc-
ture which is a part of a vectorial space. If, as van Fraassen contends, at the
level of phenomena “empirical adequacy is tantamount to truth”, observation



VAN FRAASSEN’S CONSTRUCTIVE EMPIRICISM 337

provides evidence in favor of the existence of forces, i.e. vectors which can
be measured by means of an apparatus like the one in Figure 1. Vectors and
their relations determine the empirical substructure in this case which is “at
once actual and observable”. Granted, what we have here is a clear case of
the celebrated thesis of the “impregnation of data by theories”. Forces may
be dubbed “theoretical” entities if desired, but this does not entail that they
are unobservable. If we accept that the device presented above is observable,
it can be embedded in an empirical and mathematical substructure in which
pulls are represented by vectors. The state of equilibrium of the system is
mathematically expressed by the statement that, at a point, the vectorial sum
of forces is equal to zero. Therefore forces belong to the empirical sub-
structures of the model and are real. Far from being a threat to scientific
realism, the impregnation thesis supports and reinforces it. Embedding after
all means showing that phenomena possess a structure identical to a part of
a model and that they are, in this exact sense, theorized.

Models, together with their empirical substructures, are mathematical struc-
tures which possess symmetry or invariance properties. In a vector space,
linear transformations act on vectors and leave their length invariant. In this
sense, length is an objective property (Weyl 1963, p. 73) of vectors. An
Euclidean vector space makes true some mathematical propositions (the ax-
ioms of vector space). But if mathematical expressions, which we will call
‘laws’, are unavoidable to characterize the model, axiomatization isn’t indis-
pensable and is even sometimes unavailable. Symmetry and invariance are
relative to a set of laws and to a set of mathematical objects (properties, rela-
tions) which occur in those laws. It is important to draw a careful distinction
between the invariance properties of laws and the invariance properties of
the mathematical objects, such as forces, fields, charges and so on, which
occur in the laws. In physics the symmetries of the models are the symme-
tries of the fundamental laws. This symmetry group then determines the way
in which the objects are to be transformed. In statics, the law of equilibrium
(for n forces) reads:
n
> Fi=i
i=1

The mathematical form of this law is invariant under Galilean transforma-
tions. Even if the components of the force vectors in equivalent reference
frames may vary, their magnitudes remain constant.
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5. Cartesian versus Newtonian mechanics

In Laws and Symmetry, van Fraassen briefly considers the transition from
Cartesian to Newtonian mechanics. Cartesian mechanics was not determin-
istic: from the (supposedly exact) values of the initial positions and veloc-
ities of a point-mass it is not possible to univocally calculate its positions
and velocities at some other times. If we want to “functionally” accommo-
date the phenomena of motion (van Fraassen 1989, p. 230) and obtain bigger
predictive power, we have to inject additional structure or “hidden parame-
ters” in the model (Newton added forces to the kinematic quantities which
were the only ones used by Descartes), i.e. mathematical objects which, and
this is essential, behave in accordance with specific mathematical formulae
or laws. In physics, the requirement that we want to save more and more
phenomena, demands, according to van Fraassen, a “widening of the theo-
retical framework”™, that is adding up new structure: the forces in the present
case. “This method can be described in two ways: as introducing hidden
structure, or ’dually’ as embedding” (Id. p. 229). “The word “hidden” in
“hidden parameters” does not refer to lack of empirical access. It signifies
that we see parameters in the solution which do not appear in the statement
of the problem.” (/d., p. 230). The problem, i.e. to achieve functionality, was
solved by the introduction of “hidden parameters” (forces) which are indeed
accessible to observation, as we saw, in the example drawn from statics.

Arguably, the invariance group of Cartesian mechanics can be taken to be
the invariance group of the so-called Galilean law of inertia (which was actu-
ally first formulated by Descartes) and the Cartesian scalar law of collisions
(for n bodies):

mv =k

n n

*

E m;v; = E m;v;
1=1 i=1

Provided we assume the following three hypotheses: there exists an invari-
ance group, spacetime is isotropic and homogeneous, the infinite velocity is
invariant (for Descartes, the velocity of light was infinite), it can be shown
(Berzi and Gorini 1969) that the invariance group of the law of inertia alone
is the Galileo group. The scalar law of collisions restricts Galileo group to
the group of Euclidean rigid motions (translations and rotations) and time
translations. In other words, Cartesian mechanics is not invariant under
boosts (except in the particular case of linear collisions in which the sys-
tem is boosted in the direction of the initial —and final— velocities). The
Euclidean group is also the invariance group of the structures considered
empirical in Cartesian mechanics, namely the purely kinematical quantities.
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To the law of inertia, Newton added the force-law (the fundamental law of

dynamics or Newton’s second law) and the action-reaction law:
F=mad
Fp=—Fg

The correct, deterministic, vectorial law of collisions is deduced from
those two laws. The suppression of the scalar Cartesian law of collisions
does lead to an enlarging of the symmetry group since the invariance group
of the Cartesian law of inertia is already the Galileo group. In fact, forces
must transform in such a way that the second law remains invariant under
the Galileo group, that is, forces transform like vectors as already ensured
by the statics.

Functionality is regained together with an enlarging of the global symme-
try group. But this goes along with a broadening of the invariance group of
the empirical substructures as well, which is also Galileo group. Actually,
the structures of phenomena observed in systems in uniform relative mo-
tion are now all isomorphic to empirical substructures of Newtonian models
according to the principle of relativity of Galilean mechanics. And forces
belong, as vectors, to the empirical substructures. The new objects (forces)
in Newtonian dynamics represent and are isomorphic to some observable
phenomena (pulls). Forces may be added to regain functionality, but they
are allowed in the model only because they can be correlated with phenom-
ena within statics, a branch of mechanics which precedes (is logically prior
to) kinematics and dynamics as Kant (1970) had already emphasized.

This example is illuminating in another respect. It shows that PS does not
forbid the addition of new structure and new objects (forces in this case).
It only requires that the new objects and the laws which hold for them do
not lead to a downsizing of the symmetry group of the whole model with
respect to the empirical symmetry group. This again is desirable from an
empiricist standpoint. It makes possible in principle the inclusion of the
new structure within the empirical substructure. Imagine that some newly
introduced structure is not invariant under the empirical subgroup. In that
event, its incorporation at the level of empirical substructures would render
the theory empirically inadequate: transformations allowed by the theory
would alter the empirical substructures which will then cease to be correct
representations of phenomena. The introduction of forces not only led to
the modification and enlargement of the symmetry group of the “Cartesian”
model, but to an enlargement of the empirical substructures as well.
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6. The issue of the underdetermination of theories by phenomena

The symmetry principle PS was introduced, as we saw, as a recommenda-
tion in accordance with the spirit of empiricism and not as an absolute de-
mand. PS is taken to be a guide for theory construction rather than a strict
requirement. Moreover, PS does not preclude the possibility of embedding
the same phenomena in different, non-isomorphic, models, provided those
distinct models share the same symmetries. The isomorphy of models im-
plies the identity of their invariance group, but not conversely. Models with
the same symmetry group may differ by the laws which hold in them and the
objects which occur in those laws. In such a case we would be confronted
to a genuine case of underdetermination of theories by phenomena. Then,
an honest realist would have to withhold judgement about the truth of some
laws and the existence of some objects (See McMullin 1984, p. 11, and Gh-
ins 1992 for more on this viewpoint). Such a situation does not carry with it a
widespread scepticism with respect to theoretical claims about unobservable
processes in general. A painful thorn in the flesh of the realist would be the
existence of a proof that alternative, distinct models which are empirically
equivalent for all phenomena and satisfy the symmetry principle PS can al-
ways be constructed in principle. To my knowledge, such a proof, the burden
of which rests on the shoulders of the antirealist, remains to be provided.

Let me stress again that the symmetry principle PS only has a local import.
It does allow for the underdetermination of some global properties. Glymour
(1977) and Malament (1977) have shown that, within the framework of cur-
rent standard cosmology (Robertsonian models), all possible observations
fail to univocally determine the global topology of spacetime. This doesn’t
preclude that local models have to satisfy PS. In fact, we know that in rather
large regions of the universe we can safely use the special theory of relativity
provided the phenomena studied are not too sensitive to spacetime curvature.
We also know that the invariance group of the general theory of relativity, the
group of diffeomorphisms, is wider than the Lorentz-Poincaré group. How-
ever, this doesn’t prevent us to embed local phenomena in Minkowski space-
time as is guaranteed by the Principle of equivalence. In other words, locally,
the symmetry principle holds. And the local validity of the special theory of
relativity imposes constraints on the kind of metric which is globally accept-
able. More precisely the metric must be Riemannian, 4-dimensional and of
negative signature (See Brown 1997).

Of course, the possibility of giving alternative and incompatible metaphys-
ical interpretations of the same theory remains open. For example, we could
ask ourselves if there exists some sort of substantival spacetime or if space-
time points are individuals. Such moves are neither allowed nor forbidden
by the brand of moderate and selective scientific realism advocated here (see
also Ghins 1992), which confines its existential claims to physical objects
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only to the extent that they are represented by invariant mathematical ob-
jects in the context of empirical substructures of models which, on top of
satisfying the symmetry principle PS, are also empirically adequate.
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