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DIRECT PERCEPTION IN MATHEMATICS:
A CASE FOR EPISTEMOLOGICAL PRIORITY

BART VAN KERKHOVE AND ERIK MYIN*

What is mathematics? What mathematicians do. What is a
mathematician? ... More than just somebody who does math-
ematics. ... A mathematician is someone who sees opportu-
nities for doing mathematics that the rest of us miss.

(Stewart [1998], p. 1)

1. Introduction

Arguably under the persisting influence of Plato and Descartes, unearthly
ontological and detached foundational issues are virtually all modern philos-
ophy of mathematics has been concerned with until recently. More particu-
larly, questions about existence of mathematical entities have been consid-
ered outside the context of mathematical practice and its historical develop-
ment. Indeed, issues bearing upon the coming about of ‘actual’ mathematical
knowledge have been regarded as matters of at best secondary philosophical
relevance, and have been left for others, viz. empirical scientists, to sort out.
In the light of this, it appears to us ironic that in recent treatments of math-
ematical knowledge, cognitive scientists seem to return to the very schemes
of reification and internalisation that tied the Platonic-Cartesian philosophi-
cal tradition so closely to pure ontological concerns. In this paper, we briefly
outline this circumstance, and then propose an alternative to this dominant
cognitivist view, with the aim of revitalizing discussion in mathematical epis-
temology. Thus, in section 2, we consider some contemporary work in the
field of cognitive science, as applied to mathematics. The central section 3
then develops the alternative proposal. We conclude our sketch of an alter-
native in section 4, pointing to some of its promising philosophical net gains.
That is, first, that it will allow to take mathematical talk for granted, instead
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version.
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358 BART VAN KERKHOVE AND ERIK MYIN

of trying to justify or bring down the abstract foundations of its function-
ing. Second, pure metaphysical speculation will loose its primacy, as the
alternative view takes epistemology over ontology.

2. Cognitive Science (dis)informing Philosophy

Fuelled by ever improving brain scanning techniques, psychological investi-
gation of mathematical activity has boosted the last couple of years. Its focus
has been largely restricted, however, to elementary cognitive operations and
their awakening in infants (and hominids), while no secret has been made
of its philosophical a priori: to give as much plausibility as possible to the
idea that (these) mathematical capacities are innate rather than learned.! We
shall here only be indirectly occupied with calling into question this explic-
itly nativist strand. Instead, our line of criticism will be primarily aimed at
the internalism inherent to these cognitive theories of mathematical ability,
as reflected in the following line: “An organ specialized in the perception
and representation of numerical qualities lies anchored in our brains” (De-
haene [1998], p. 86). We claim that prominent cognitive approaches should
not apply this mechanistic picture, even if possibly plausible for some rel-
atively unsophisticated mathematical abilities, across the board. Moreover,
we interpret this mechanistic move as a determined effort to ‘save’ the ob-
jectivity of mathematical things before all else, thus bowing to the demands
of the Platonic-Cartesian philosophical tradition.

Setting the stage to further discuss this, we remind that modern dismissals
of mathematical Platonism are invariably indebted to the one expressed by
Paul Benacerraf in his 1973 paper “Mathematical Truth”. There, main-

stream Platonism, which “assimilates the logical form of mathematical propo-

sitions to that of apparently similar empirical ones” (Benacerraf [2002],
p. 103), a quality indeed praised by the author for reasons of scientific uni-
formity, is brought down. It is essentially unable to account for mathematical
claims as constituting genuine knowledge, Benacerraf holds, for, in view of
the utter abstractness of the objects under consideration, it cannot properly
meet the requirement of a causal theory of reference. Put otherwise, this
argument, broadly accepted by naturalistically aimed philosophers, says that
the relation between a referring sign and its content must rely on a natural
causal relation, impossible for Platonic objects to contribute to. From the
stance taken by Benacerraf, it would then appear a refreshing and comple-
mentary idea to consider particular regions in the brain innately responsible

! Butterworth [2000], Dehaene [1998], Devlin [2001] and Lakoff/Nuiiez [2000] have all
concerned themselves with carrying through (part of) this particular task.
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DIRECT PERCEPTION IN MATHEMATICS 359

for specific mathematical operations. This would avoid traditional references
to an ‘elusive’ intuition putting us in contact with mathematical heaven.

One of the recently proposed cognitive theories of mathematics, that ex-
pounded in Lakoff/Nuifiez [2000], goes even considerably further than that,
in adding a genealogical account of the mathematical mechanisms in terms
of activities and practices, such as collecting, separating, etc. On the face
of it, this strive to anchor mathematics in practice, or more specifically: to
embody it in the practitioners, indeed brings about an appealing answer to
the enigmatic question “where mathematics comes from”. The answer is
that it comes from mundane activities, which seems to free, or at least fur-
ther distance, us from the tangle of ontological concerns of the philosophical
tradition. However, in the theory of Lakoff and Nufiez, initial emphasis on
practice and embodiment is denied further on. More particularly, the concept
of embodiment is subjected to a narrowly ‘cognitivist’ interpretation, taking
the main mathematical constructs as resulting from internal mechanisms and
representations rather than from practices performed in the world out there.
That is, in the end, it is really not bodies or action that matter, but represen-
tations of bodies enabled by or equated to ‘fossilized’ cognitive mechanisms
(dubbed ‘metaphors’ by Lakoff and Nuifiez).

Let us elaborate somewhat. Lakoff and Nufiez explicitly call for and then
claim to provide with an empirical account of mathematical activity. How-
ever, they do not give any independent arguments as to why their purported
description of the cognitive mechanisms yielding mathematical knowledge
is not itself arbitrary or infected by ‘normative’ prejudice. At the outset of
chapter two, for example, they draw an analogy between mathematical and
natural language use, e.g. concerning spatial behavior, claiming that “math-
ematical ideas [...] are often grounded in everyday experience [... as] ways
of mathematizing ordinary ideas” (p. 29). They claim that “research in cog-
nitive linguistics has shown that spatial relations in a given language decom-
pose into conceptual primitives called image schemas, and these conceptual
primitives appear to be universal” (p. 30). They go on to claim that some of
these very concepts, particularly ‘containment’ and ‘orientation’, are of truly
central importance to mathematics as to language in general. The upshot is
“that the neural circuitry we have evolved for other purposes is an inher-
ent part of mathematics, which suggests that embodied mathematics does
not exist independently of other embodied concepts used in everyday life”
(p. 33), as there are: “centrality, contact, closeness, balance, straightness,
and many, many more” (p. 34). In other words: 1) Linguistic structure is
grounded in experiences with concrete objects; 2) Practice can have this in-
fluence on language because it becomes a template for a ‘cognitive structure’
— ultimately a neurocognitive mechanism localised in the brain; 3) Mathe-
matics is just another result of this transformation of concrete activities into
cognitive mechanisms. Our capacities for arithmetic, for example, flow from
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360 BART VAN KERKHOVE AND ERIK MYIN

neurocognitive mechanisms, which in their turn derive from the practical ac-
tivities of collecting, grouping and separating concrete objects.

As their story develops, the authors hypothesize together a whole fabric of
cognitive mechanisms to account for every possible aspect of mathematics in
a speculative, or at least highly hypothetical way. Moreover, this technique is
used on an ad hoc basis throughout the book, as new metaphorical schemes
are introduced all the time to ‘explain’ the arisal of further, more compli-
cated, mathematical operations and objects. For example, in order to ar-
rive at the concept of zero, a species of “metaphors that introduce elements”
(p. 64) are said to be at work. In our view, Lakoff and Nufiez undertake
but traditional idea analysis, offering rational reconstructions which are then
ingeniously ‘turned’ into cognitive science, by simply relabeling all histori-
cal phenomena of idea development as newly emerging ‘metaphors’. Next,
they reify and ‘mechanisize’ these metaphors as ‘neural connections’.?> The
pressing question is what is being gained with all this, in explanatory terms.
Moreover, there is a good reason to think the whole approach might just be
a setback from traditional idea analysis. For, by claiming that most of these
cognitive mechanisms operate on an unconscious level,® Lakoff and Nufiez
hand us over to a cognitive level totally out of reach and control (a level
which, nevertheless, the authors themselves do seem to have a theoretical
grasp on). By equating cognition with hidden processes, consciousness is
turned into a problematic epiphenomenon. For us, this is the world upside
down. It remains an open question how such a view can account for the ra-
tionality of mathematical development, and especially for the fact that ‘hard’
thinking and argument seem to be involved, especially when there is change
and novelty.

One interpretation of Lakoff and Nuiiez is that we are faced here, albeit
in a different guise, with the same Platonic-Cartesian scheme of reification
and that lies at the very origin of the problems struggled with by the tra-
dition. Mathematics now becomes determined by a fixed realm of entities,
no longer situated in Plato’s heaven, but constituted by the mechanics of the

2 A few illustrations. The complex image schemas that a nesting of basic metaphors gives
rise to are considered to be both perceptual dnd conceptual, and to have, by virtue of their
structure, “built-in spatial logics” (p. 31). Conceptual containers are said to be “part of the
mind” (p. 32). “Such neural connections [viz. results of the correlations between counting
and physical manipulation], we believe, constitute a conceptual metaphor at the neural level”
(p. 55, our emphasis).

’E. g.: “Most of our everyday mathematical understanding takes place without our being
able to explain exactly what we understood and how we understood it” (p. 28), or: “This
metaphor [add and take away] is so deeply ingrained in our unconscious minds that we have
to think twice to realize that numbers are not physical objects and do not literally have a size”

(p. 56).
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DIRECT PERCEPTION IN MATHEMATICS 361

mind: mathematical structure has been moved from heaven into our heads.
Humanity appears to loose deliberate control over mathematics to anony-
mous brain mechanisms. This means that in the end, we are out of touch
with the world of mathematics, now not because it’s up above in Plato’s
heaven, but instead because it is buried deep down in ourselves. Against all
this, we shall contend that, for one committed to take mathematical practice
seriously, mathematical objects and properties should find a place out there,
in the real world. This enterprise can start we think, with picking up an idea
of Penelope Maddy, that of direct perception in mathematics.

3. Direct Perception: A Non-Internalist Alternative
3.1. Traces

Penelope Maddy has at a point (in)famously defended that sets, i.e. what she
holds to be the basic mathematical entities, are not abstract, but instead have
spatio-temporal location, and can be directly perceived as such: “I intend to
reject the traditional Platonist’s characterization of mathematical objects; I
will bring them into the world we know and into contact with our familiar
cognitive apparatus” (Maddy [1990], p. 48). More specifically, Maddy has
maintained that we literally see sets, thus dauntlessly holding on to mathe-
matical realism, while rejecting abstractness. Enter Steve, an exemplary man
searching his refrigerator for two eggs. “He opens the carton and sees, to his
relief, three eggs there. My [Maddy’s] claim is that Steve has perceived a set
of three eggs. [... T]his requires that there be a set of three eggs in the carton,
that Steve acquire perceptual beliefs about it, and that the set of eggs partic-
ipate in the generation of these perceptual beliefs in the same way that my
hand participates in the generation of my belief that there is a hand before
me when I look at it in good light” (op. cit., p. 58, our emphasis).

In passing,* Maddy claims this account to be an extension to the field of
mathematics of the perceptual theory called ‘direct’ or ‘ecological’ realism,
originated by J.J. Gibson.” Quite to our surprise, she has presumed this the-
ory to be mainstream among contemporary cognitive scientists, while, on
the contrary, insisting on mental representations, and trying to link these to
neural architecture (see the previous section), is in fact the more popular
option.® The latter difficulty of assessment aside however, there is a more

#Maddy [1990], p.50n.
3 Gibson [1979].

oA possible (partial) diagnosis for this confusion is that Maddy blends ecologism with
Piaget’s representational ‘enrichment’ theory of perceptional learning as discontinuous or
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substantial issue. Namely, in order for sets to be really out there, for Maddy,
perceivers alone do not seem to suffice. “As the amount we know about
things by perception is very limited” (op. cit., p. 61), the existence of sets
is said to be also dependent on theoretical considerations (partially) exter-
nal to the perceiver. “The elementariness of the notion of set, its ease of
manipulation, and the immense success of set theory, both as a foundation
for other branches of mathematics and as a mathematical theory in its own
right, all help to make the set of eggs the most attractive candidate for the
role of number-bearer” (op. cit., p. 62). Indeed, this set-theoretic account
has more recently been incorporated by Maddy in a full-fledged founda-
tional program. It transfers the Quinean naturalist idea of seeing the whole
of (natural) science as a going concern to the more limited case of (pure)
mathematics. This means the latter’s unconditional methodological inde-
pendence as a discipline is defended, over any external limitations such as
e.g. applicability, and over any philosophical ‘interferences’. ‘“Mathematical
methodology is properly assessed and evaluated, defended or criticized, on
mathematical, not philosophical (or any other extra-mathematical) grounds”
(Maddy [1998], p. 164, our emphasis). The consequences for ontology are
thus: “Take the [Quinean] indispensability arguments to provide good rea-
sons to suppose that some mathematical things (e.g. the continuum) exist.
Admit, however, that the history of the subject shows the best methods for
pursuing the truth about these things are mathematical ones, not those of
physical science” (Maddy [1997], p. 108, our emphasis). We spot the dan-
ger here of a subtle reintroduction, through foundationalism, of the priority
of abstract ontology, something we believe could ultimately be to the disad-
vantage of practice.

That is, taken to its limits, an approach like Maddy’s seems capable of
leading us straight into to a re-opening of the gap between theory and prac-
tice. For what in this position prevents one to subscribe to the idea of a
monolithic and unchangeable theory that determines ontology? And with
this, we would indeed be back where we started from: stuck with a concep-
tion of ontology completely detached from actual practice, with pernicious
philosophical consequences such as fixedness. As there will be no room
left for any development of mathematical practice that is not mirrored in
the ‘real’ ontology, an essential ingredient of genuine practice is simply dis-
carded. Related to this problem is one of skepticism. When convinced that,
in the end, there is just one correct ontological picture, then the possibility
has to be considered that, in practice, all we have done up to now is wander
in the dark, never mind the apparent successes of mathematics applied. Let

stage-wise concept formation, while Gibson’s is a functionalist ‘differentiation’ theory of
perceptual learning as refinement of the skills in responding to environmental stimuli. (Gib-
son/Pick [2000], ch. 1)
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it be clear that we are in complete agreement on both the possibility of direct
perception and the idea that the content of perception can be determined by
things outside the immediate grasp of the individual observer. Social norms
and cultural practices are obvious candidates for such a determining role.
Nevertheless, we think there is a danger in severing the firm link between
the perceiver’s capacities and the determinants of the content that he is per-
ceiving. That is, the perceiver at some level has to be a participant in the
social games played, or be involved in a particular culture or history. With-
out any such tangible link, the gate is swung clear open for the reentrance of
pure decontextualized ‘theory’, which, as we argued, seems directly to lead
to Plato’s heaven. We are not claiming Maddy defends such an extreme case
herself. We just want to point at the fact that nothing in her approach seems
to prevent it from arising.

Another contemporary philosopher of mathematics following up upon Gib-
sonian ideas, but also in a highly implicit way, is Philip Kitcher. In his book
The Nature of Mathematical Knowledge (Kitcher [1984]), he has set out to
unfold a project of mathematical naturalism (or, alternatively, empiricism or
constructivism), in effect embracing psychological, sociological and histori-
cal aspects as epistemologically informative. Kitcher equally challenges the
a priori conception of what constitutes mathematical knowledge, showing
that it requires the individual’s temporal contact with both physical and so-
cial environment, and that mathematics concerns, in essence, manipulations
of the world that are taught to us. The entire body of mathematics is then
conceived of by him as a universal idealization of these elementary opera-
tions. At this level, the possible compatibility with a fixed ontology, e.g. of
Maddian sets, is brought out again, however. Mathematics begins “with the
apprehension of those structures that are instantiated in everyday physical
phenomena. On the simplest version, we perceive the properties of small
concrete sets (that is, sets whose members are physical objects). Mathemat-
ics proceeds by systematically investigating the abstract realm, to which our
rudimentary perceptual experiences give us initial access” (Kitcher [1988],
p.311). But then Kitcher confides that, in the end, “Platonists can simply
take over my stories about rational interpractice transitions, regarding those
transitions as issuing in the recognition of further aspects of the realm of
abstract objects” (l.c.). What we shall be concerned with in the rest of the
paper is to return with care to the original Gibsonian intuitions casually ap-
pealed to by both Maddy and Kitcher, and show that their straightforward
application to the theory of mathematics in fact avoids any possible collapse
into Platonism.
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364 BART VAN KERKHOVE AND ERIK MYIN

3.2. Elaboration with examples

The appeal of the Gibsonian approach as applied in the philosophy of math-
ematics seems to us to be double. First, the concept of direct perception
provides the possibility of a robust, but non-abstract realism. Indeed, one
of the central Gibsonian claims is that many different kinds of entities and
properties, no matter how ‘complex’ they be from an absolutist perspective,
can be immediately or directly perceived. Moreover, this immediate per-
ception is grounded in the fact that the entity or property itself is present in
reality as such. Thus, assuming its appropriateness as an example of direct
perception, any of the sets that hungry Steve might perceive are structures
out there in concrete reality. This first important Gibsonian idea appears to
be fully endorsed by Maddy, and in fact motivates her account as the, or a,
proper answer to Benacerraf’s challenge about causal contact between man
and mathematics. However, there is a second important aspect of the Gibso-
nian approach, one not so strongly present in Maddy’s writings: the idea of
the relational or co-constituted nature of what is perceived in direct percep-
tion. It is a fundamental Gibsonian insight that one should always consider
the object of perception from a point of view that properly takes into account
the capacities and specifics of the perceiver. Thus, though what is perceived
is always some structure ‘out there’ in the world, it makes no sense, from the
‘ecological’ point of view defined and defended by Gibson, to think about
what is ‘out there’ from an absolutist or nonrelational point of view, one
that does not refer whatsoever to a perceiving creature and its capacities for
picking up and acting upon these structures ‘out there’. It is exactly this
dimension of the theory which, when applied to mathematics, has the liber-
ating effect of forbidding absolutist stances like Platonism. In the Gibsonian
approach, the two aspects mentioned are the central components accommo-
dating the pivotal notion of ‘affordances’. The basic idea is that what is
perceived are possibilities for action ‘afforded’ (made possible) precisely by
that which is perceived. Affordances are relational by definition, depending
at once on the structure of what is perceived, and on the practical actions the
perceiver can bring to bear upon what causes the act of perception.
Examples of affordances can be found on many levels: from the ‘drinka-
bility’ of liquids, or the ‘eatability’ of ripe fruits, to ‘openability’ afforded
by doorknobs. An elaboration by means of a slightly less mundane exam-
ple will, we hope, allow the reader to see the attractiveness of this concept
for the philosophy of mathematics. The example comes from a (now rather
famous) study by William Warren on the perception of (the affordance of)
‘climbability’ of stairs (Warren [1984]). In it, it was investigated whether
people were able to ‘directly perceive’ whether or not particular stairways
were ‘climbable’ with minimal energy expenditure (that is, without switch-
ing from climbing to clambering). The physics behind the story is that people
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can only climb stairs in a normal fashion if the proportion of the difference
in height between stairs to the length of the climber’s legs falls within a spe-
cific range. Once this proportion exceeds a certain threshold, it is simply no
longer possible to maintain bipedal balance when climbing, and one has to
start clambering. Warren now asked people (of various length) to assess the
‘climbability’ of different staircases with varying rising degrees, and found
them very accurate indeed in correctly judging this relational property. In
other words, people turned out to be able to directly perceive (the affordance
of) ‘climbability’, a structure ‘out there’, defined by a specific numerical
relation between stairway and personal leg length.

This example brings to the fore three important points. Firstly, it illustrates
how direct perception is based on a robust realism, because the property de-
tected is a property of reality. However, the example also shows, secondly,
that the detected property is intrinsically related to the capacities of the per-
ceivers, who are constrained by such things as locomotion or the having of
a specific point of gravity. Outside this context, the detected relation, as
a ‘pure’ proportion, becomes totally arbitrary, a needle in a haystack of a
myriad of other contingent properties. Thirdly, affordances are (relatively)
complex. The affordance defining relation cannot be thought of as an ele-
mentary property, but instead consists of an intricate environment/capacity
attunement, which seems to necessitate quite some perceptual sophistica-
tion. This is conspicuous in our climbability example: its ‘mathematical’
profile, as a proportion, indicates this complexity. Still, perception can be
said to be direct, that is, immediate and without the previous need of dis-
cursive inference or even much complicated ongoing cognitive activity. The
complex nature of the property in the climbability example discourages (of-
ten encountered) a priori rejections of a Gibsonian approach to mathematics
stressing the complex nature of mathematical properties.

Overall, the above discussion should properly suggest how the idea of af-
fordances can be applied to (perception in) mathematics. That is, we propose
to consider mathematical entities in terms of the sets of practices they ‘af-
ford’. E.g., numbers, in this sense, are what they are because they afford such
operations as adding or multiplying. Just as with Gibsonian affordances in
general, we would say that mathematical entities or properties can be di-
rectly perceived by those perceivers familiar with the constitutive operations
connected with these entities or properties. Put otherwise, just as fruit of a
specific colour might be perceived as ‘ripe’ by an animal with the appropriate
visual system (as well as particular food preferences), numbers can be per-
ceived by a someone possessing particular number-related skills.” Thus, in
this way, a skilled mathematical perceiver can be said to ‘directly perceive’

7Our idea is certainly not new. It is related to remarks by Wittgenstein, such as: “In the
triangle I can see now this as apex, that as base. [...] ‘Now he’s seeing it like this, now like
that’ would only be said of someone capable of making certain applications of the figure quite
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mathematical properties. He ‘sees’ a set by acknowledging that a number
of set theoretical operations are applicable to the configuration at hand, and
he ‘sees’ (or senses, which means ‘acknowledges’) numbers when applying
or discerning the applicability of arithmetical operations. This account is
robustly realistic in the sense explained above, without running the danger
of collapsing into extreme externalism (i.e., radically separating theory and
practice) or Platonism. Indeed the question of what kinds of mathemati-
cal properties ‘really exist’ in an absolute or noncontextual sense looses its
urgency, because posing that question reveals a disregard for the fundamen-
tal relational nature of mathematical properties-considered-as-affordances.
Moreover, this account allows to answer Benacerraf’s concerns about causal
(in)efficacy, because the effects of mathematical properties on those who
perceive and perform activities with them belong to the relational core that
constitutes the background against which the questions about the existence
of these mathematical properties becomes meaningful. Of course mathe-
matical entities can affect our practices, because they acquire ontological
momentum in virtue of those practices. Finally, the Gibsonian approach has
another fundamental advantage on offer. The appropriateness of questions
about the existence of entities and properties are relativized with respect to a
context of practical abilities, and as the potential for development of abilities
is open-ended (to anyone’s knowledge), this approach has an uneasy rela-
tionship with the idea of a ‘definitive’ ontology for mathematics. Again, this
sets it radically apart from Platonism and any of the extremely externalist
epistemologies accommodating it, viz. ultimately allowing (or even invit-
ing) theory to be detached from practice. In the final section we will pick up
this aspect of the Gibsonian approach again, and frame it as an endorsement
of epistemological or methodological over ontological concerns.

To give further strength to this cognitive theory of open-ended mathemat-
ical practice, we first give an illustration of how it is in effect compatible
with, indeed stands in support of, one of the most prominent theories in the
foundational history of mathematics: that of the genetic method in arith-
metic, by Richard Dedekind (1831-1916). This theory was provoked by an
aporia prevalent in the nineteenth century, namely of how to make sense of
the negatives and their roots. The practice of dealing with this type of in-
tegers, their ‘discovery’ if you will, does of course go way back, at least
as far as medieval Hindu arithmetic (Kline [1990], ch. 9). What we are
particularly considering here though is the systematic, foundational endeav-
our of justifying them as genuine numbers. Interestingly, and contrary to a
century later, we should also note that philosophical preoccupation at that

freely. [...] The substratum of this experience is the mastery of a technique” (Wittgenstein
[1953], part II ch. X, p. 208 in our version of the text).
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time was of an epistemological rather than a logical kind, and that, accord-
ingly, the idea of formal proof in the present, rigorous sense was still in the
early stages of its development. Now, in a paper the importance of which is
widely acknowledged by historians of foundational mathematics today, viz.
his Habilitationsrede of 1854, Dedekind addressed the problem of the gen-
eral progression of the numbers, and in response offered a (sketchy) ‘rational
reconstruction’ of how the mathematical community had de facto succeeded
to pass through all subsequent stages of numerical extension, up to the imagi-
naries. He evoked, e.g., “how the operation of adding positive numbers gives
rise to the operation of subtraction, which in turn engenders the negative in-
tegers; how multiplication of integers then leads to the reciprocal operation
of division, and division to the creation of the rational numbers” (Dedekind
[1999], p. 755, emphasis added).® And so on.’

In our terms, what one sees happening here is the growth of ontology
through the extension of practice. New mathematical entities acquire criti-
cal ontological weight because novel affordances enter the stage: the nega-
tives and their further kin acquire their status as stable mathematical things
through their allowing certain sets of operations to be applied upon them.
Also, once these practices have gained foothold, it seems natural to us that,
to someone familiar with those operations, negatives or imaginaries are con-
sidered as ‘directly perceived’. Two more features of our approach can be
illustrated by this example. The first one is that there is a structure to prac-
tices, to affordances, and thereby to mathematics. Mathematics grows as
established practice starts transcending its boundaries. Therefore, it makes
sense to speak of degrees of elementariness in mathematics. However, such
distinctions are always context relative, as practice is without discernible be-
ginnings and without discernible end. Moreover, such distinctions cannot
be used to ground for example a distinction between what can be directly
perceived (the elementary) versus what cannot (the complex), for, to the
skilled perceiver, both are perceptually accessible in the same immediate

8 The latter formulation is borrowed from the introduction by editor and translator
William Ewald.

9 “The successive repetition of the same multiplication — that is, the formation of a
product out of a determinate number of identical factors (which are now rational numbers)
— yields, when conceived as a single operation, the concept of exponentiation” (op. cit.,
p- 758). The division of an exponent, in its turn, “requires us to perform the unique inverse
of the original operation of exponentiation, namely, to split a given number into an (also
given) number of equal factors. This way of proceeding leads us to new number domains,
because the previous domain no longer satisfies the demand for the general applicability of
the arithmetical operations; one is thereby compelled to create the irrational numbers (with
which the concept of limit appears) and finally also the imaginary numbers” (op. cit., p. 759).
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sense. This brings us to the second aspect: open-endedness. The exam-
ple seems to illustrate that no a priori limit can be imposed on the possible
growth of practice, affordance and mathematics. Old operations can always
form the basis for new operations. Old mathematics continually gives rise to
new mathematics (in which it might be retained or transformed).

An additional example, including a further extension of the numerical
realm, will allow us to further complicate (and refine) our account: the inven-
tion of quaternions by William Rowan Hamilton (1805-1865).1° Although
merely mentioned in Dedekind [1999], it is remarkable that this develop-
ment did proceed along the very lines of the scheme set out there. That is,
Hamilton literally tried to extend the complex numbers from two- to three-
place systems (to finally arrive at his four-place quaternion system). Accord-
ing to Pickering [1995], this episode “marked an important turning point in
the development of mathematics, involving as it did the first introduction of
noncommuting quantities in the subject matter of the field, as well as the
introduction of an exemplary set of new entities and operations” (p. 120,
our emphasis). In the light of what was said above, that might not be very
striking, yet on top of that, what does make this case particularly salient
is the decisive methodological role played by the pursuit of a one-to-one
association between algebra and geometry. Indeed, as Pickering explains,
Hamilton was in constant search of proper equivalent geometrical represen-
tations of the algebraic hypotheses he came up with, and vice versa. Notably,
this eagerness in the end proved vital for reaching his results, as it appar-
ently allowed him to cope with specific problems (conceptual resistances,
in Pickering’s terminology), i.e. create for himself additional affordances
accommodating his further research. This striving for a geometry-algebra
correspondence by Hamilton should then be taken as another, higher-level
type of cognitive ‘handling’ or operating upon theoretical configurations al-
ready at hand, extending their respective scopes.!! So, not only did Hamilton
act on the available number-types, he was also able to ‘handle’ larger bod-
ies of mathematics and put them to his further theoretical advantage. The
products of the operation-driven extension of mathematics become opera-
tive tools themselves, engendering yet further extension. Again, along the
road from integers to quaternions, we have gradually passed from elemen-
tary, say daily, to abstract and in se complex scientific practices. Once more,

10For another example in this vein, viz. that of Georg Cantor (1845-1918) exploiting
the then available language in order to refer to a transfinite ordinal as a number, see Kitcher
[1984] (pp. 173-5).

"For a contemporary example of proceeding through this type of ‘transpositions’, see
Visser [2001]. On the acknowledgement of their heuristic importance (as analogies), also see
the pioneering work by Pélya [1973].
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this illustrates quite well that affordances are spread throughout the simple-
complex and concrete-abstract spectra, and that, consequently, their ‘reality’
is of all kinds, and not at all limited to the realm of ‘ordinary’ medium-sized
material objects.

Before summing up the main philosophical merits of our cognitive ac-
count, we wish to explicate the affinities it exhibits with category theory, the
major alternative (to set theory) in foundational research based on “axiom-
atizing not elements of sets but functions between sets” (Mac Lane [1985],
p. 398)."> The most important philosophical feature of category theory is
its trading in of ontological for structural primacy, its basic axiom being
that objects and functions together are formative of the basic entities, cat-
egories. The essential notion of function gives category theory a distinctly
pragmatical dimension, and this is why it has been appealing to practicing
mathematicians. In particular, it is epistemologically plausible (heuristically
simple, analytically self-evident) and methodologically valuable (providing
conceptual unification without the need for a reductive ontology). Category
theory appears to have been vulnerable though to critical remarks about the
cognitive underpinning of its epistemological plausibility, i.c. its relying on
the elementary notion of operation, without properly explaining how this
should be understood. It seems one could dismiss this criticism as unim-
portant (e.g. given that intuition is as bad a problem for Platonist accounts),
or otherwise engage in the metaphysical debate. A forceful and indepen-
dent line of defence, answering the call for naturalism, however, would be
to connect with empirical/cognitive approaches to mathematical activity. As
we have explained above, a broadly ‘Gibsonian’ approach, when applied to
mathematics, is a good candidate for implementing such a strategy, outlin-
ing a philosophically less ‘loaded” account in which a full-fledged empirical
theory of mathematical operations could be moulded. '

4. Philosophical Effects: Epistemological Priority

In his famous essay on the effectiveness of mathematics,'* Eugene Wigner
holds that what strikes us as unreasonable or mystical about the applicabil-
ity of mathematics becomes fairly straightforward if only looked at from the
appropriate angle. That is, the perspective provided when one no longer as-
sumes that mathematics fell (or was brought down) from the sky just like

12 We thank Leon Horsten for first suggesting this link.
13 This paragraph relies on Marquis [1995] to a considerable extent.

14 Wigner [1960].
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that, but on the contrary was created as an earthly science “of skillful op-
erations and concepts” to begin with, i.e. in order to be useful. We share
the profound pragmatic concern that is displayed here, and hope that the ap-
proach sketched in broad strokes above might be one way in which progress
can be made on this path.

From the Platonist’s point of view, no doubt, it will be remarked that our
approach is relativistic, because it ‘contextualizes’ questions of ontology,
and claims to settle them within the realm of practices and practitioners.
For Platonism, the very subject matter of ontology is the absolute, i.e. es-
sentially uncontextual, nature of things, which forbids any such move. Our
approach, then, would not even start to address ontology. But is not this
Platonist criticism incoherent to start with? For if indeed there is anything
absolute about mathematics, one should find it in any context. Natural num-
bers might come to mind here (or, why not, sets). But then these aspects will
be as discernible from our perspective as from any other! The difference
between our approach and the Platonic one really is not about universality,
but about whether or not it is possible in principle to consider ontological
questions completely apart from considerations of practice. Take for exam-
ple the question whether the complex numbers would exist if there never
had been human beings, cognitive organisms or a material universe. To the
Platonist such questions do make sense, while we would reject them, pre-
cisely because asking them relies on a complete disregard of the (essential)
connection with practice.

In conclusion, we see ourselves as joining appeals that “a new episte-
mology of mathematics is needed before confronting ontological questions”
(Echeverria [1996], p. 21, original emphasis). If we de-absolutize ontology
and consider it to be truly open-ended, it will be, we believe, to the benefit of
the further, unbiased exploration of how we come to know mathematically.
In other words, to stop demanding any explanatory power from mathematical
objects on themselves will have liberating effects on the philosophy of math-
ematics. Cognitive mechanicism is necessarily traded in for epistemological
pragmatism, whereby the mind is considered as constituted and constitutive
at the same time. This would indeed and at last provide research concerned
with development (see Piaget) and non-rigidity (see Lakatos) with proper
philosophical room in order to be taken seriously, i.e. at face value.

Centre for Logic and Philosophy of Science
Brussels University (VUB)
http://www.vub.ac.be/CLWF
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